Eigenvector-based sparse canonical correlation analysis: Fast computation for estimation of multiple canonical vectors
نویسندگان
چکیده
Classical canonical correlation analysis (CCA) requires matrices to be low dimensional, i.e. the number of features cannot exceed sample size. Recent developments in CCA have mainly focused on high-dimensional setting, where both under greatly exceeds These approaches impose penalties optimization problems that are needed solve iteratively, and estimate multiple vectors sequentially. In this work, we provide an explicit link between sparse regression with analysis, efficient algorithm can pairs simultaneously rather than Furthermore, naturally allows parallel computing. properties make much efficient. We theoretical results consistency pairs. The development based solving eigenvectors problem, which significantly differentiate our method existing methods. Simulation support improved performance proposed approach. apply eigenvector-based GTEx thyroid histology images, SNPs RNA-seq gene expression data, a microbiome study. real data also shows compared traditional CCA.
منابع مشابه
Minimax Estimation in Sparse Canonical Correlation Analysis
Canonical correlation analysis is a widely used multivariate statistical technique for exploring the relation between two sets of variables. This paper considers the problem of estimating the leading canonical correlation directions in high dimensional settings. Recently, under the assumption that the leading canonical correlation directions are sparse, various procedures have been proposed for...
متن کاملResistant multiple sparse canonical correlation.
Canonical correlation analysis (CCA) is a multivariate technique that takes two datasets and forms the most highly correlated possible pairs of linear combinations between them. Each subsequent pair of linear combinations is orthogonal to the preceding pair, meaning that new information is gleaned from each pair. By looking at the magnitude of coefficient values, we can find out which variables...
متن کاملSparse Weighted Canonical Correlation Analysis
Given two data matrices X and Y , Sparse canonical correlation analysis (SCCA) is to seek two sparse canonical vectors u and v to maximize the correlation between Xu and Y v. However, classical and sparse CCA models consider the contribution of all the samples of data matrices and thus cannot identify an underlying specific subset of samples. To this end, we propose a novel Sparse weighted cano...
متن کاملSparse Kernel Canonical Correlation Analysis
We review the recently proposed method of Relevance Vector Machines which is a supervised training method related to Support Vector Machines. We also review the statistical technique of Canonical Correlation Analysis and its implementation in a Feature Space. We show how the technique of Relevance Vectors may be applied to the method of Kernel Canonical Correlation Analysis to gain a very spars...
متن کاملStructured Sparse Canonical Correlation Analysis
In this paper, we propose to apply sparse canonical correlation analysis (sparse CCA) to an important genome-wide association study problem, eQTL mapping. Existing sparse CCA models do not incorporate structural information among variables such as pathways of genes. This work extends the sparse CCA so that it could exploit either the pre-given or unknown group structure via the structured-spars...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2021
ISSN: ['0047-259X', '1095-7243']
DOI: https://doi.org/10.1016/j.jmva.2021.104781